
Andreev spectroscopy of doped HgTe quantum wells

M. Guigou and J. Cayssol
CPMOH, UMR 5798, Université Bordeaux I, 33405 Talence, France

�Received 7 June 2010; revised manuscript received 3 August 2010; published 17 September 2010�

We investigate the Andreev reflection process in high-mobility HgTe/CdTe quantum wells. We find that
Andreev conductance probes the dynamics of massive 2+1 Dirac fermions, and that both specular Andreev
reflection and retroreflection can be realized even in presence of a large mismatch between the Fermi wave-
lengths at the two sides of the normal/superconducting junction.
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I. INTRODUCTION

Three-dimensional topological insulators �TIs� and two-
dimensional �2D� quantum spin hall �QSH� states are novel
electronic phases which are characterized by topological in-
variants rather than by spontaneously broken symmetries.1–3

Both QSH states and TIs are distinguished from ordinary
insulators by the presence of conducting edge or surface
states surrounding an insulating bulk.4–7 These protected
boundary states were experimentally confirmed in HgTe
quantum wells,8,9 and in three-dimensional TIs such as
Bi1−xSbx,

10 Bi2Te3, and Bi2Se3.11,12

All these materials follow a general mechanism whereby
the strong spin-orbit interaction drives an inversion between
bands of distinct symmetry,5 e.g., opposite parities.6 Simple
massive Dirac equations describe altogether the conduction/
valence and the spin degrees of freedom of QSH systems or
TIs, the crucial band inversion feature being captured by the
sign of the mass term.1–3,5 Therefore doped HgTe quantum
wells are also model systems to investigate the dynamics of
massive Dirac fermions in 2+1 dimensions.13–15

Combining these unique topological phases with conven-
tional superconductivity raises fundamental questions about
topological superconductors16,17 and may lead to the discov-
ery of novel exotic modes such as Majorana fermions18–23

with potential applications for spintronics and quantum
computing.24 Previously most studies have focused on prox-
imity induced superconductivity within one-dimensional
�1D� edge states19,25 or 2D surface states.18,20–22 In doped TIs
�respectively, QSH systems�, the fluctuations should be less
detrimental to superconductivity than in the 2D �or 1D�
boundary states available in the insulating regime. Indeed
superconductivity was recently reported in the topological
insulator Bi2Se3 doped with copper atoms26 while Heusler
superconductors27 or Thallium based chalcogenides28 are
promising candidates for a topological superconductor.

In this context it is of primary importance to understand
proximity effect between a doped topological insulator and a
s-wave singlet superconductor. The fundamental scattering
process is the Andreev reflection �AR� whereby an incident
electron is converted into a reflected hole at the interface
between a normal metal and a superconductor.29,30 Moreover
it was recently predicted that relativistic electrons in
graphene may experience an unusual specular Andreev
reflection.31–33

In this paper, we show that AR can be used as a probe of
the carrier dynamics in HgTe quantum wells which is inter-

mediate between linear and quadratic dispersion. As low-gap
semiconductors, HgTe wells also exhibit a specular Andreev
reflection which is sensitive to band inversion. While we use
HgTe for calculations, the general features are expected to
apply for other two-dimensional QSH systems34 and for
three-dimensional TIs.7,11,12 Our findings also complete pre-
vious studies of the Andreev conductance of a Normal/
superconductor �NS� contact in presence of Rashba spin or-
bital coupling.35

The paper is organized as follows. In Sec II we introduce
the model for the NS contact. The energy and angular depen-
dences of the Andreev reflection processes are described in
Sec. III. These single channel results are used in Sec IV to
obtain the multichannel differential conductance which is the
relevant quantity for transport experiments.

II. MODEL

In this section, we present the model of the NS junction
and describe the scattering formalism used to compute the
Andreev probability and the differential conductance.

A. Hamiltonian

We consider a thin HgTe quantum well realized between
two identical CdTe barriers. The two-dimensional subbands
of such quantum wells have been derived from the Kane
model of HgTe and CdTe using the envelope function
method.36 The QSH state is related to the crossing between
the electronlike subband E1 and the heavy holelike subband
H1 which is controlled by the HgTe layer width.5 When the
bulk-inversion asymmetry is neglected, those relevant bands
are degenerated with respect to the spin index �� � and have
opposite parity eigenvalues. Then the low-energy dynamics
of this four-band model is captured by the massive Dirac
Hamiltonian5

H�k� = �h�k� 0

0 h��− k� � �1�

given in the basis order ��E1+� , �H1+� , �E1−� , �H1−��. The
spin-up block h�k�=��k�+da�k��a is expressed in terms of
the standard Pauli matrices �a �a=1,2 ,3� acting in
��E1� , �H1�� space. The Hamiltonian H�k� is a Taylor expan-
sion with respect to the in-plane wave vector k= �kx ,ky�
whose coefficients are constrained by parity and time-
reversal symmetries. Microscopic theory further yields that
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da= �Akx ,−Aky ,M�k�=M −Bk2� and ��k�=C−Dk2, where
k2=kx

2+ky
2. The parameters A, B, C, D, and M depend on the

quantum well geometry.5 In particular, the inversion between
�E1� and �H1� is controlled by the sign of the mass term M,
the QSH state being realized in the inverted regime �M
�0�. The chemical potential C determines the electronic fill-
ing of the bands which can be electrostatically tuned by the
action of a distant metallic gate.

We assume that a singlet s-wave superconductor induces a
pairing potential in some region of a ballistic HgTe/CdTe
quantum well. Thereby the Hamiltonian of Eq. �1� must be
completed by particle-hole �or charge conjugation� symmetry
leading in principle to an eight by eight Bogoliubov-de
Gennes Hamiltonian. Since superconductivity only pairs
time-reversed states, a spin-up electron will be coupled with
a hole in the spin down band. Therefore electrons and holes
are described by two decoupled �four by four�
Bogoliubov-de Gennes-Dirac equations such as

�h�− i��r� ��r�
���r� − h�− i��r�

�	�r� = E	�r� , �2�

where 	�r�= �	E1+ ,	H1+ ,	E1−
� ,	H1−

� �, and the absence of
magnetic field is assumed. The excitation energy E is mea-
sured from the Fermi level. The matrix � is diagonal at the
lowest order approximation in momentum. In principle, the
diagonal entries, �E and �H, of the pairing matrix are not
equal because �E1� and �H1� involve different combinations
of atomic orbitals. Nevertheless we first assume that �E
=�H=�0ei
 for simplicity. In a uniform system, the eigen-
modes of Eq. �2� are plane waves with momentum k and
energy

E�k� = 	���k� � d�k��2 + �0
2, �3�

with d�k�=	A2k2+ �M −Bk2�2. The � sign refers to the
conduction/valence subbands.

B. Scattering problem

We now consider a straight normal/superconducting inter-
face at x=0 �Fig. 1�. The normal side �x�0� is described by
Eq. �2� with C�r�=CN and ��r�=0 while the superconduct-
ing side may have a distinct electronic filling fixed by C�r�
=CS and a uniform pairing potential ��r�=�0ei
. This sharp

step model is valid when the potentials vary on typical scales
smaller than the Fermi wavelength of the carriers in HgTe.
We further assume a perfect interface which is relevant for
high-quality contacts. Previously a NS contact in the pres-
ence of Rashba spin-orbit coupling was already considered
in the context of spintronics.35 The main distinction between
the HgTe/CdTe effective Hamiltonian and similar Rashba
systems consists in the presence the �m−Bk2��3 term in Eqs.
�1� and �2�.

We solve the scattering problem with an incoming spin up
quasiparticle in the conduction band. Since the scattering is
elastic and the problem invariant by translation along y axis,
the excitation energy E and the transverse momentum ky are
conserved. Hence all the scattered waves are written hereaf-
ter as 	�x�eikyy.

In the normal part, x�0, electrons and holes are decou-
pled since ��r�=0. The electronlike quasiparticles are de-
scribed by four-spinor plane waves

	e�x� = T����ke�,0,0�eikexx, �4�

with ���k�= 
�d�k�+M�k� ,A�kx− iky��.13–15 The upperscript
T denotes transpose and the � sign corresponds to the con-
duction or the valence subband. For a n-doped HgTe well,
the Fermi level lies in the conduction subband. The disper-
sion equation, CN−Dk2+d�k�=E, allows for two possible
values of k2

k1,2
2 �E�

=
1

2�B2 − D2�

� � 	�2 − 4�B2 − D2��M2 − �CN − E�2�� ,

�5�

where �=−A2+2MB−2�CN−E�D and B2D2. The positive
one, �k1

20�, corresponds to a the propagative mode in the
bulk while an additional evanescent mode �k2

2�0� shows up
at interfaces.13–15,37 The incident and reflected electrons have
longitudinal momentum kex=k1 cos �, and −k1 cos �, respec-
tively, � being the incidence angle �Fig. 1�. The evanescent
electron is described by a complex momentum kex=−i�−k2

2

+ky
2�1/2.
The holelike quasiparticles are also described by the four-

spinor plane waves

	h�x� = T�0,0,���kh��eikhxx. �6�

The longitudinal wave vectors khx is obtained by solving the
equation CN−Dk2+d�k�=−E for a hole in the conduction
band �intraband AR� or CN−Dk2−d�k�=−E for a hole in the
valence band �interband AR�.

In the superconducting part �x0�, the eigenmodes are
four Bogoliubov quasiparticles which are all evanescent be-
low the gap �E��0�

	S��x� = T����kS�,���kS�e�i��e��ikSx−��x, �7�

	S�� �x� = T����kS��,���kS��e
�i��e��ikSx� �i��x, �8�

where �=	�0
2−E2 /�vF is an inverse coherence length. The

phase �=arccos�E /�0� is intrinsically related to electron-
hole conversion at a normal conductor-superconductor

FIG. 1. �a� NS contact. �b� Schematic band structure where 2�M�
is the bulk gap and M the mass. The black dots represent the inci-
dent and reflected electrons while the open dot stands for the An-
dreev reflected hole �here interband specular reflection is shown�.
Arrows represent group velocities.
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interface.29 We have introduced the wave vectors kSx= �k1S
2

−ky
2�1/2 and kSx� = i�ky

2−k2S
2 �1/2, where k1S

2 and k2S
2 are defined

by Eq. �5� under the substitution CN→CS and E=0. The
scattering amplitudes of the four reflected modes and four
evanescent transmitted modes in the superconductor are de-
termined by writing the continuity of the wave function and
of its derivative at x=0 �Appendix�.

C. Andreev differential conductance

When a positive bias V is applied to the normal side with
respect to the superconductor, the current I is carried by the
injected electrons, the reflected electrons 
with amplitude
ree�E ,��� and the Andreev reflected holes 
with amplitude
rhe�E ,���. The corresponding differential conductance of the
NS interface can be written30

�I

�V
= g0�eV�� dE�−

� f

�E
��

−�/2

�/2

d� cos �
1 − R�E,��

+ RA�E,��� , �9�

where g0�eV�=e2k1�eV�W / ��h�, W is the width of the HgTe
quantum well along y axis and f = f�E−eV�=1 / �e�E−eV�/T

+1� is the Fermi distribution of incident electrons in the nor-
mal lead N at temperature T. The probability for an electron
of energy E to be reflected as an electron is R�E ,��
= �ree�E ,���2 while RA�E ,��= j�E,��

j�−E,�� �rhe�E ,���2 denotes the
probability for Andreev reflection as a hole. The average
current

j�E,�� = − 2k1�E�cos ��D + B�
d�k� + M�k��2

+ A2k2�D − B� − A2
d�k� + M�k��� , �10�

is derived by the standard quantum mechanical procedure
�Appendix�.

III. SINGLE CHANNEL ANDREEV REFLECTION

In this section, we investigate the Andreev reflection pro-
cess for a single channel which is labeled by its energy E and
incidence angle �. We contrast the behaviors of the Andreev
reflection probability RA�E ,�� at high- and low-doping levels
in the normal part of the NS junction. In the later case, the
subgap Andreev reflection can be either an intraband or in-
terband process whereas it is always intraband in heavy-
doped wells. In both cases, varying the ratio B /A allows to
turn continuously the Andreev reflection probability RA�E ,��
from the one obtained in graphene/superconductor junctions
to the one for standard metal/superconductor junctions.

A. Heavy doping �CN�š�0

We first consider HgTe wells with typical metallic doping,
i.e., �CN���0. Then an incident electron �energy E� from the
conduction band always finds an electron of the same band
�energy −E� to form a Cooper pair thereby realizing an in-
traband Andreev conversion. Therefore the Andreev reflec-
tion is a standard retroreflection because the electron energy
E is always much smaller than the conduction band Fermi
energy �CN�.

We find that the probability RA�E ,�=0� is strictly mono-
tonic �increasing� below the gap, and presents a singularity at
eV=�0. The AR probability is controlled by the Fermi wave-
length mismatch �FWM� between the normal and supercon-
ducting sides, and usually decreases when the FWM in-
creases. At given electronic fillings, the Andreev probability
is suppressed when the ratio B /A is increased, namely, when
going from Dirac �purely linear dispersion� to Schrödinger
�purely quadratic dispersion� dynamics �Fig. 2�. This cross-
over is characterized by the dimensionless parameter �
=k1�0�B /A= �n /n0�1/2, where n=k1

2�0� / �2�� is the two-
dimensional carrier density in the conduction subband while
n0=A2 / �2�B2��5�1012 cm−2 for A=4 eV·Å and B=
−70 eV·Å2. When electrons are injected through the junc-
tion with a finite incidence angle, the Andreev reflection
probability decreases but has qualitatively the same energy
dependence than the �=0 mode �Fig. 2�. The general cross-
over between purely linear or quadratic dispersion still per-
tains for any incidence angle.
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FIG. 2. �Color online� Single channel Andreev reflection prob-
ability through the NS junction for �=0 �top panel� and �=� /10
�bottom panel�. The electronic fillings are set by −CN=30 meV and
−CS=1 eV while the induced gap is �0=1 meV. All curves are
plotted for A=4 eV·Å, and in the inverted regime M =−0.1�0. The
Andreev reflection probability is progressively suppressed when the
quadratic dispersion is increased: −B=0.7; 7; 70; 700; and
7000 eV·Å2 from top to bottom. In contrast to B, the parameter D
has very little impact on Andreev reflection probability provided
�B� �D�. Hence we have set D=0 in order to allow for a broader
window of variation for the parameter B.
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B. Low doping �CN���0

We now turn to the case of low doping in the normal side,
namely, �CN���0. At low voltage bias �0�eV� �CN�− �M��,
the reflected hole belongs to conduction band thereby realiz-
ing the standard intraband AR which is a retroreflection. At
intermediate voltages ��CN�− �M��eV� �CN�+ �M��, the AR is
completely suppressed in the bulk because the hole should be
in the semiconducting gap. At higher voltages �eV �CN�
+ �M��, the reflected hole corresponds to the removal of a
valence band electron. Then the AR is an interband process
and a specular reflection. In brief, Andreev reflection allows
for a spectroscopy of the HgTe/CdTe well 2D spectrum since
for instance the energy window where the AR is totally sup-
pressed is 2�M�, i.e., twice the semiconducting gap, for the
mode �=0.

Moreover at the bottom of the conduction band, a singu-
larity appears in the AR probability at E= �CN�− �M� and nor-
mal incidence �blue solid curve in Fig. 3�. Nevertheless, this
abrupt behavior becomes smoother when electrons are in-
jected with an nonzero angle and the AR probability de-
creases.

Furthermore the energy window where the Andreev re-
flection is totally suppressed 
RA�E ,��=0� broadens while
increasing incidence angle �Fig. 3�. This phenomenon has the
following explanation. Owing to translational invariance
along the NS interface, the transverse momentum ky is con-
served and one has to solve an effective one-dimensional
scattering problem for each value of ky. It turns out that a
finite ky acts as a supplementary mass/gap in this 1D scatter-
ing problem. For instance, when M =0 the 2D system is gap-
less but the 1D problem 
described by the dispersion relation
E�kx ,ky� for defined ky� acquires a gap proportional to the
transverse momentum, as it is well known in graphene.38

IV. DIFFERENTIAL CONDUCTANCE

In this section, we focus on the differential �I /�V conduc-
tance of the NS contact which is obtained by angular inte-
gration over all the transverse channels. The �I /�V charac-
teristics are qualitatively distinct in the low and in the
heavily doped regimes, respectively, and they depend quan-
titatively upon the ratio B /A and the FWM.

A. Heavy doping �CN�š�0

The voltage dependence of the differential conductance
�I /�V is inherited from the energy dependence of the AR
probability through Eq. �9�. Hence, in the case of heavy dop-
ing in the N region, the �I /�V characteristics are also strictly
increasing below the gap, and present a singularity at eV
=�0 �compare Figs. 4 and 2�. The differential conductance of
a normal potential step is asymptotically recovered far above
the gap �eV��0�.

We now discuss the crossover between Dirac �purely lin-
ear dispersion� and Schrödinger �purely quadratic dispersion�
dynamics �Fig. 4�. For this purpose we use again the dimen-
sionless parameter �=k1�0�B /A defined in Sec. III A. The
increase in the ratio B /A leads to the decay of the Andreev
conductance. This result is in accordance with the fact that
FWM strongly suppresses AR in standard metals30 whereas
AR is very robust against FWM at a graphene/
superconductor interface.31,32 These contrasted behaviors can
be used to probe the relative strength of linear and quadratic
dispersion in HgTe wells �Fig. 4�.

Finally thin films of 3D TIs are ideal systems to probe the
complete crossover regime since their effective parameters A
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FIG. 3. �Color online� Single channel Andreev reflection prob-
ability in the inverted regime �M =−0.1�0� at low doping �−CN
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and B can be tuned by varying the film thickness34 whereas
only M can be significantly varied in HgTe quantum wells.

B. Low doping �CN���0

In the case of low doping in the normal side ��CN���0�,
the subgap differential conductance reveals both the semi-
conducting gap and the sign of the mass M �Fig. 5�. Fore-
most the behavior of the differential conductance shows the
presence of the reflected hole in the conduction/valence band
through the electron-hole conversion at the interface. As a
function of the voltage bias, the AR process is successively
an intraband process �0�eV� �CN�− �M��, forbidden in the
bulk ���CN�− �M��eV� �CN�+ �M��� and an interband process
�eV �CN�+ �M�� which is reminiscent of specular AR in
graphene.31,32 Unfortunately the observation of specular AR
in graphene was hindered so far by disorder effects occurring
at low doping. We expect that specular AR should be more
easily observed in HgTe quantum wells since actual samples
are characterized by larger elastic mean-free paths than in
graphene on a substrate.

Unlike the Andreev reflection probability, the behavior of
the differential conductance in the inverted regime does not
emphasize any peak at energy corresponding to the bottom
of the conduction band. At such energy, only one channel
participates to the Andreev conductance so that its contribu-
tion is tiny compared to the number of channels that are
considered in the ballistic conductance g0�E�.

Moreover there is a sizeable difference between the nor-
mal �M /B�0� and the inverted regimes �M /B0� �Fig. 5�.
The interband specular AR is enhanced in the non inverted
regime with respect to the inverted regime whereas Andreev
conduction is stronger in the inverted regime when 0�eV
� �CN�− �M� �intraband AR�. It should be emphasized that,
even at the band crossing M =0, the AR in HgTe/CdTe quan-
tum wells differ from graphene owing to the presence of
quadratic terms Bk2 and Dk2 in the Hamiltonian Eq. �2�.

C. Experimental realization

The predicted differential conductance can be checked ex-
perimentally by realizing transparent enough contacts on ex-
isting mercury telluride heterostructures. In particular at low
doping, the specular �interband� Andreev reflection could be
observed in HgTe/CdTe quantum wells with a superconduct-
ing contact. Nevertheless mass fluctuations, related to spatial
variations in the HgTe layer width, may hinder the observa-
tion of specular AR in such low doped HgTe/CdTe wells
�Fig. 5�.

Another difficulty is related to the fact that the influence
of doping in the superconducting region might be difficult to
separate from the one of other parameters, such as the mass
M or the ratio B /A, using Andreev measurements only �Fig.
6�. Moreover �CS� is neither controlled nor even known in
contrast to �CN� which can be tuned by gating. We anticipate
that future experiments will solve this issue by combining
transport measurements through NN and NS junctions.

Finally, one should also expect in the inverted regime a
contribution from the helical edge states. Since there is per-
fect Andreev reflection at a QSH insulator/superconductor
junction, this contribution should be 4e2 /h �2e2 /h per
edge�.25 In the metallic regime, the large number of channels
makes this edge conductance negligible with respect to the
bulk conductance. Nevertheless near the band edges, i.e., at
very low doping, the edge contribution becomes comparable
with the bulk one.

V. CONCLUSION

In conclusion, Andreev conduction is a probe of the car-
rier dynamics in doped HgTe/CdTe quantum wells. Indeed
the underlaying AR mechanism is extremely sensitive to the
balance between Schrödinger �purely quadratic dispersion�
and Dirac �purely linear dispersion� dynamics. The unavoid-
able FWM between the normal and superconducting sides is
not so harmful in HgTe/CdTe wells than in usual metals �but
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also more detrimental than in graphene�. Furthermore we
expect that our analysis of intraband AR pertains for strong
TIs in the doped regime, such as Bi2Se3 or Bi2Te3 since they
are described by similar effective Hamiltonians than HgTe/
CdTe quantum wells.1,7 Nevertheless those large gap 3D TIs
are less favorable than the small gap HgTe/CdTe wells for
the observation of specular AR.
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APPENDIX

1. Boundary conditions

We provide a derivation of the boundary conditions we
used in this paper to determine the scattering amplitudes.

The Bogoliubov-de Gennes matrix equation Eq. �2� con-
sists in four scalar equations. For definiteness let us consider
the first-scalar equation

�C + M�	E1+�x,y� + �D + B���x
2 + �y

2�	E1+�x,y�

− iA�x	H1+�x,y� + A�y	H1+�x,y� + ��x��0ei
	E1−
� �x,y�

= E	E1+�x,y� , �A1�

where the Heaviside function ��x� indicates the presence of
superconductivity only on the right side of the junction and
where we made the substitution kx,y→−i�x,y. Integrating Eq.
�A1� over the small region 
−� ;�� around the interface, we
obtain

�C + M��
−�

�

dx	E1+�x,y� + �D + B��
−�

�

dx��x
2 + �y

2�	E1+�x,y�

− iA�
−�

�

dx�x	H1+�x,y� + A�y�
−�

�

dx	H1+�x,y�

+ �0ei
�
0

�

dx	E1−
� �x,y� = E�

−�

�

dx	E1+�x,y� . �A2�

Taking into account that the spinor 	�x ,y�
= �	E1+�x ,y� ,	H1+�x ,y� ,	E1−

� �x ,y� ,	H1−
� �x ,y�� is bounded

in the region 
−� ;��, the limit �→0 yields the relation

lim
�→0

�D + B�
�x	E1+��,y� − �x	E1+�− �,y��

− lim
�→0

iA
	H1+��,y� − 	H1+�− �,y�� = 0. �A3�

The second term of the left-hand side is equal to zero, ac-
cording to the continuity of the wave functions �otherwise
the first-order derivative are not defined�. Hence �x	E1+�x ,y�
is also continuous at x=0.

Following the same procedure for the three others differ-
ential equations, we obtain the complete set of boundary
conditions

	�x,y��x→0− = 	�x,y��x→0+,

�x	�x,y��x→0− = �x	�x,y��x→0+. �A4�

2. Average currents

We give here the derivation of the average current. The
current operator in the x direction is defined by14

Jx =
�H

�kx
=�

− 2D+kx A 0 0

A − 2D−kx 0 0

0 0 2D+kx − A

0 0 − A 2D−kx

� ,

�A5�

where H is the Bogoliubov-de Gennes Hamiltonian appear-
ing in Eq. �2� and with D�=D�B. The average current for
spin-up electrons writes

je�E� = 	e
��x�Jx	e�x� , �A6�

where 	e�x� is defined in Eq. �4�. Substituting Eqs. �4� and
�A5� into Eq. �A6� leads to the expression Eq. �10� of the
average current.

The average current for a reflected hole can be obtained
by following the same procedure under the substitutions
	e�x�→	h�x� and kex→khx. Then the average current of
reflected holes is

jh�E,�� = � 2k1�− E�cos �D+
d�k� + M�k��2 + A2k2D−

− A2
d�k� + M�k��� , �A7�

where the � sign refers to the conduction/valence band.
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